Resonance:

A <u>resonator</u> is something that can <u>resonate</u>, i.e., something that can vibrate or allows the propagation of waves. Examples:

- Ocean, lake (water waves)
- Vacuum (electromagnetic waves)
- air (sound waves)
- pipe, tube, flute, wind instrument
- string, metal bar, xylophone
- microwave or laser cavity
- RLC-circuit

Some resonators (ocean, interstellar space, air) allow waves of all wavelengths. Other resonators allow only waves with certain wavelengths. This phenomenon is called **resonance**.

An RLC circuit has a <u>center frequency</u>, where the attenuation of a vibration is minimal. This is called the <u>resonance</u> <u>frequency</u>. The width of the resonance is determined by the damping resistor.

Finite resonators may have <u>boundary conditions</u> (nodes or antinodes at the ends). There is a series of standing waves called <u>harmonics</u> which satisfy the boundary conditions. The harmonics are also called <u>eigenmodes</u> or <u>eigenfrequencies</u>, since the problem of solving the wave equation with boundary conditions is similar to finding the <u>eigenvalues</u> of matrix (linear algebra).

Strategy for solving resonant standing wave problems:

What is the nature of the boundary conditions: Is there a node or an antinode on each end?

Distance between two nodes: $\lambda/2$

Distance between two antinodes: $\lambda/2$

Distance between a node and an antinode: $\lambda/4$

Standing waves on a string usually have nodes on both ends.

A standing sound wave has a node, if the end of the resonator (pipe) is closed. It has an antinode, if the end of the resonator is open.